Andrei's work, 1 Apr 2014

CCD Instrumental Signatures

Gary Bernstein (UPenn) & Andrei Nomerotski (BNL)

DES-LSST meeting, Fermilab, 24 March 2014

What's the problem with thick CCDs?

Electrostatics in semiconductor

Electric field lines inside CCD are not straight \rightarrow pixels change their size and shape

Static : edge effects, tree-rings

window

"Dynamic": brighter-fatter effect

Andrei's talk Outline

- Instrumental effects related to sensors
 - Brighter Fatter, tree rings and edge effects

- How we plan to address this in LSST
 - Lab measurements
 - Simulations of sensor effects
 - Systematics due to sensor effects

Edge Effects in CCDs

- On the egde:
 - Non-linearity up to 50%
 - Ellipticity up to 20%
- DES saw similar effects
 - Also for cosmic muons

J.Estrada

Brighter-Fatter Effect and Pixel Correlations

 Phenomenological approach using parameters from correlation matrices, can provide corrections

Signal Correlation in Neighbouring Pixels

2-d autocorrelation at 73Ke, half of full well depth, (Harvard & IN2P3 analysis)

Lateral E Field from tree rings

Proper electrostatic simulations can be done but need to know sensor geometry/doping

LSST: sensor simulations with Phosim

- Phosim (J.Peterson et al): simulating telescopes one photon at a time
 - Instrumental effects include atmosphere, optics and sensors
- Good way to connect sensors to precision astrophysics
- Validate sensor part by simulations of lab setups and comparison to measurements
 - Most of sensor effects are now implemented in Phosim

Use tuned simulations to evaluate sensor effects on science (can turn physics on/off)

Current work on sensor effects in Phosim

- Code development (J.Peterson et al)
- Brighter-Fatter effect (Duke)
- Tree rings (BNL)
- Description of lab setups at UC Davis and BNL

Tools

- Phosim
- DM stack
 - Synergy with fast camera project

```
sExtractor →

PSFex →

Possibly Erin's code for shear calculation
```

Running object number 1 NUMBFR # 2 FLUX ISO Isophotal flux [count] # 3 XPEAK IMAGE x-coordinate of the brightest pixel [pixel] 4 YPEAK IMAGE y-coordinate of the brightest pixel [pixel] **5 A IMAGE** Profile RMS along major axis [pixel] 6 B IMAGE Profile RMS along minor axis [pixel] 2351835 2090 2036 0.771 0.742 2353493 2072 2037 0.819 0.761 2352875 2055 2037 0.866 0.735 2353452 2001 2037 0.870 0.736 2351604 2036 2036 0.807 0.7492018 2353907 2036 0.814 0.750 7 2355640 2090 2054 0.773 0.742 2353266 2036 2054 0.767 0.740

All installed at the cluster

Organization/Plans

- Regular Phosim meetings/tutorials
- DM testing software meetings
- LSST project sensor/raft meetings
- Science plans
 - PSF chromatic effects due to sensors
 - Spurious shear due to sensors
- Goal present first relevant WL results by summer at DESC meeting

More

Example: Evaluating contributions to shear

Absolute spurious shear correlation function after combining 10 years of r- and i-band LSST data; PSF knowledge from polynomial interpolation of stars

Requirements for weak lensing : shear correlation systematics are controlled to ~30% of the stochastic levels, or < 2×10^{-5} for $\theta < 1'$ and $< 1 \times 10^{-7}$ for $\theta > 5'$.

Fringes

- Interference patterns due to reflections off the sensor bottom, visible at longer wavelengths
- Use a random surface with some flatness
- Will use BNL metrology data to validate
- Assumes that the backside is flat
 - Fringe data at different wavelengths should allow to extract the backside flatness

